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Poisson-Boltzmann cell model for heterogeneously charged colloids
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We introduce the Poisson-Boltzmann cell model for spherical colloidal particles with a heterogeneous
surface charge distribution. This model is obtained by generalizing existing cell models for mixtures of
homogeneously charged colloidal spheres. Our model has similar features as Onsager’s second-virial theory for
liquid crystals, but it predicts no orientational ordering if there is no positional ordering. This implies that all
phases of heterogeneously charged colloids that are liquidlike with respect to translational degrees of freedom

are also isotropic with respect to particle orientation.
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I. INTRODUCTION

Already a long time ago, Marcus [1], Ohtsuki et al. [2],
and Alexander er al. [3] realized that the cell model approach
of Wigner and Seitz [4] to calculate the properties of elec-
trons in solids can also be applied to colloidal matter. In this
case, there are no quantum effects and, instead of a wave
function, one calculates the ion distributions around charged
colloidal particles dispersed in a liquid medium. In the sim-
plest case, the colloidal dispersion consists of one colloidal
species immersed in a 1:1 electrolyte solution. The colloidal
particles are homogeneously charged and have a spherical
shape. Additionally, the simplification of taking a spherical
Wigner-Seitz cell—instead of space filling—is justified in
fluid phases with no broken translational symmetry.

A number of extensions has been made to this basic cell
model. There is the eccentric Poisson-Boltzmann (PB) cell
model [2,5] and the heterogeneous—or polydisperse—cell
model [6,7] to describe mixtures. Additionally, the cell
model has been extended by applying cylindrical Wigner-
Seitz cells for the description of disk-shaped and rodlike par-
ticles [8,9]. In the present paper, we make an extension to-
ward particles with a heterogeneous surface charge
distribution such as patterned colloids [10] or Janus particles
[11]. Janus particles are characterized by two distinct regions
of surface area. Each of these “faces” has a different chemi-
cal composition, which can create spontaneous particle ag-
gregation [12]. Our aim is toward a description of self-
organization of these particles from single-particle
properties. The cell model can be a powerful tool, giving a
simple description of these complex systems. From this de-
scription, a number of thermodynamic quantities can be de-
rived such as free energy and osmotic pressure.

We investigate how surface charge heterogeneity influ-
ences the distribution of particle orientations in the case of a
homogeneous positional distribution. This case can be con-
sidered as a simplified description of a fluid of these particles
but also as an oversimplified description of a solid. Since the
particle interactions are implemented through the boundary
conditions of the Wigner-Seitz cell, one can choose to ne-
glect the correlations between the orientational and posi-
tional ordering. The basis of our model is the generalization
of the Poisson-Boltzmann cell model by Biesheuvel et al. [6]
considering mixtures, together with the insight of Onsager
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[13] that a distribution of orientations can be considered in
the same way as mixtures. In principle, this model can be
used to predict the phase behavior of a large class of colloi-
dal and nanoparticles because an anisotropic (as well as
spherical) particle shape can be treated. However, here we
restrict ourselves to a system of spherical colloidal particles.

II. CELL MODEL FOR MIXTURES

We start by giving the prerequisites for the ordinary
spherically symmetric cell model (see Fig. 1). In this simple
case, we consider a system of N identical spherically sym-
metric colloidal particles in a volume V. These particles have
radius a and a surface charge Ze, where e is the elementary
charge. The system is presumed to be in osmotic contact with
a reservoir of monovalent cations and anions at total concen-
tration 2p,, with charge *e. Both the particle and the sur-
rounding medium are considered to be dielectric media,
where €, and €,,, are the permittivities of the particle and the
solvent, respectively.

Within Poisson-Boltzmann theory, one relates the density
profiles p.(r) of the ions to the electrostatic potential W(r)
in a fixed configuration of the colloidal particles. This com-
plicated nonlinear N-body problem can be simplified consid-

FIG. 1. Illustration of the Poisson-Boltzmann cell model. A col-
loidal particle of radius a is surrounded by ions. It is situated in the
center of a spherical cell of radius R.
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erably by regarding a single colloidal particle in the center of
a Wigner-Seitz cell surrounded by the ions. This cell is as-
sumed to have a spherical shape (of radius R) instead of
space filling. The volume of the cell is fixed by the available
volume per particle,

4 Vv

—R’=—. (1)

3 N
We treat the ions in a mean-field description, such that we
obtain the PB equation

5 0 for 0<|r|<a
Vo =1 ,
«* sinh ®(r) for a <|r| <R,

(2)

where «k'=1€,,/2pBe’ is the Debye screening length, and
® =8¢V is the dimensionless electrostatic potential, where
B=1/kgT. This second-order nonlinear partial differential
equation describes the electrostatic effects of the ions in the
cell volume surrounding the colloidal particle. The boundary
conditions are determined by the charge on the particle and
the cell electroneutrality. The first boundary condition is
given by

q)(r)|rTa: q)(r)|rlm (3)

J VA J
fin;(b(r”rm = ﬁezm + Eoul;‘(b(r”rla’ (4)

which fixes the electric field at the particle surface. In Eq.
(4), Z is the number of elementary charges on the particle
surface. Because of the homogeneous surface charge distri-
bution, there is no electric field inside the particle. This re-
duces boundary condition (4) to

d Zly
—® =d'(a)=—- 2, 5
ar (r)|ria (a) az ( )

where ly=Be*/4me,, is the Bjerrum length. The second
boundary condition fixes the electric field at the cell bound-
ary, according to Gauss’ law

®’'(R)=0. (6)

The PB equation (2) together with the boundary conditions
(5) and (6) form a closed set and describe the basic Poisson-
Boltzmann cell model as studied, for example, in Refs.
[3,14,15].

Now we discuss the case of a mixture of equally sized
homogeneously charged colloidal species with surface
charge Ze. Again, the particles have radius a and are posi-
tioned in the center of a spherical Wigner-Seitz cell of radius
R. The PB equation (2) is solved separately for each colloidal
species i, and the notion of electroneutrality is applied to the
system as a whole [6]. Each solution ®,(r) is determined by
the surface charge density on the corresponding colloidal
species

@l =- 22 )

Given that the cells of each pair of species are considered to
be neighboring, it is natural to impose a common boundary
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value @, for the potential on every cell surface. This value is
by definition equal to the average value of the electrostatic
potential at the cell boundary for different species. Hence,
we have

®,(R) = E @R =D, Vi, (8)

where x;=N;/N is the molar fraction of species 7, such that

Ex,: 1. )

i

The boundary value ®y, is fixed by setting the average value
of the charge contained in the cells for different species to
zero. According to Gauss’ law, this is achieved by imposing

Z x®/(R)=0. (10)

The PB equation (2) applied to each species i together with
the boundary conditions (7), (8), and (10) again form a
closed set.

In principle, one could allow for a different cell radius R;
for each colloidal species. In this case, a factor Ri2 must be
included in the summation of Eq. (10). One subsequently
imposes a set of physically motivated conditions on these
radii. These conditions must comply with the fact that the
average cell volume of the system is given by

4 \%
TS k= (11)

In the case of mixtures, where the charge of all species has
the same sign, one can fix each R; by imposing the condition
that the electric field must vanish at the cell boundary of each
species [7]. This condition is equivalent with imposing elec-
troneutrality on the cell of each species separately. There is
no guarantee, however, that this is possible for a general
mixture of charged spheres. For reasons of simplicity, we
will not use such an extension. Hence, in this paper, the cell
radius is given by a single value R.

II1. EXTENSION TOWARD HETEROGENEOUS CHARGE
DISTRIBUTIONS

We now consider a system of spherical colloidal particles
that are not homogeneously charged such as Janus particles
[11]. Again, the system consists of N identical spherical par-
ticles of radius a in a volume V. We apply the same Poisson-
Boltzmann theory, such that the electrostatic potential obeys
the PB equation (2). As before, we fix the position of each
particle at the center of a spherical Wigner-Seitz cell of ra-
dius R, and the PB equation must be solved for each “spe-
cies.” However, in this case we replace the species index i by
an orientation @, and each solution is denoted by ®(®;r). In
the spirit of Onsager, we can view such an orientational dis-
tribution as a mixture, where the different particle species
have a distinct charge distribution.

In this paper, we focus on charge distributions that are
cylindrically symmetric with respect to the particle orienta-
tion @. This charge distribution gives us the boundary con-
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FIG. 2. (Color online) Illustration of the Poisson-Boltzmann cell
model for heterogeneous charge distributions. For each direction i
perpendicular to the cell surface, we determine the appropriate
boundary conditions.

dition on the particle surface at each position an,

b, (@;a1i) = D, (@;an), (12)

e - VO, (&1ai) = dmlgo(@:n) + 1 - VO, (@;an),
(13)

where o(@;n) is the surface charge density (in units of e)
that belongs to a particle with an orientation &, and €
=€,/ €, 1S the relative dielectric constant of the particle with
respect to the surrounding solvent. The labels “in” and “out”
denote the solutions inside the colloidal particle and outside
the particle, respectively.

Next, we must supply a generalized version of the bound-
ary conditions on the cell surface given in Egs. (8) and (10).
The following approach is illustrated by Fig. 2, which shows
the directionality that must be included in the appropriate
boundary conditions. First, we generalize the concept of a
fixed cell surface potential, as given by ®; in Eq. (8). Be-
cause of the lack of spherical symmetry in this case, the cell
surface potential becomes a function of the position RA on
the cell surface. Similar to the cell model for mixtures, the
value of this potential is defined as the average value of the
electrostatic potential at the cell boundary for different spe-
cies. However, the average value is taken at the position of

opposite orientation
®(&:RA) = (D)(- RA) = Dp(-1d) Vo,  (14)

and instead of a summation over species weighted by the
molar fractions x;, we have an integral over particle orienta-
tions & weighted by the orientational distribution function
(ODF) f(&)

(P)(r) = f dof(d)P(d;r). (15)

This distribution is normalized such that
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fdd)f(é)) - 1. (16)

The boundary condition in Eq. (14) ensures that the potential
of two touching cells—at positions RA and -—RA,
respectively—belonging to arbitrary species is continuous.
Consequently, the definition of the cell surface potential
®,(A) is such that it is always an even function

q)R(ﬁ) = (DR(_ ﬁ)- (17)

Finally, we have to impose a boundary condition that fixes
this cell surface potential. However, if we only impose global
electroneutrality on the system, we obtain a boundary condi-
tion that is too general for a solution that is not spherically
symmetric. It would ensure that the average value (over all
“species”) of the charge contained in each Wigner-Seitz cell
vanishes. By applying Gauss’ law, we see that this condition
is satisfied by setting the average value of the electric field
integrated over the surface to zero

f di[hi - V(P)(RiA)] =0. (18)

Interestingly, this fixes only the isotropic contribution to the
cell surface potential. Therefore, we impose an additional
condition that is based on the concept of continuity of the
electric field flux from one cell to another. The difference
between the outward flux at the cell boundary and the aver-
age inward flux of neighboring cells is represented by

AFp(@;h) =1 - VO(o;RA) —1i - V(P)(— RiA).  (19)

This quantity is averaged over all particle orientations and
set to zero, in order to insure global electric field flux con-
servation

(AFg)(R) =0, (20)
which is equivalent to imposing
i - V(O)(RiA) =i - V(D)(— Rn). (21)

This condition does fix the cell surface potential, and it de-
fines an average boundary value of the radial derivative such
that it is an odd function of n.

IV. SPECIAL LIMITING CASES: PERFECTLY ISOTROPIC
AND PERFECTLY ALIGNED

In this section, we apply specific choices for the ODF. In
turn, these choices yield a specific form for the boundary
conditions (14) and (21). The resulting models are less intri-
cate than the full model we presented in the previous section.
Also, these models yield boundary conditions that one would
expect from a naive description of such systems.

Let us take a look at the model that our boundary condi-
tions yield when we implement specific ODFs. First, we con-
sider a perfectly isotropic orientational distribution

5) =
fil @)= 22)

Since in such a system there is no preferential direction, we
argue that all solutions—for different particle orientations—
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are equivalent. Consequently, the cell surface potential
®,(1) is independent of the position on the cell surface

(blso(d)’Rﬁ) = (DR' (23)

This result is in accordance with the notion that in the iso-
tropic case the average over all particle orientations [Eq.
(15)] is equal to the average over all orientations A of the
position on the cell surface and that this average no longer
depends on either orientation. Therefore, the boundary con-
dition (21) is equivalent to the condition that each cell is
electroneutral

i - V(O )(RiA) = f di[i - VO, (o;RA)]=0. (24)
Alternatively, we can choose a perfectly aligned orientational
distribution

£i(@) = 86 -1). (25)

Clearly, in this case there is only one solution to be deter-
mined

®\(Z;r) = y(r), (26)

and the boundary conditions (14) and (21) become
(I)H(Rﬁ) = (I)H(_ Rﬁ), (27)
fi - VO (RA) = 1i - VO, (- RA). (28)

Evidently, the choice of a perfectly aligned orientational dis-
tribution leads to periodic boundary conditions, where each
position RA on the cell surface is identified with position
—RA.

V. APPLICATION TO LINEARIZED POISSON-
BOLTZMANN THEORY

To solve the full nonlinear problem is possible numeri-
cally, but it turns out to be very involved [16]. Therefore, we
restrict ourselves to the linearized version of Poisson-
Boltzmann theory. In this case, the nonlinear right-hand side
of the PB equation is linearized around a certain value. We
denote it by ®,, such that the linearized Poisson-Boltzmann
(LPB) equation is given by

V2D, (@:r) = k* cosh D[ D, (@:;1) — D] + &% sinh Dy,.
(29)

In some cases, the value for @ is chosen to be zero. This
choice is meaningful if the concentration of colloids, as well
as the total surface charge density, is low. Alternatively, its
value can be set to the isotropically averaged value of the
potential at the cell boundary. This choice is particularly use-
ful when one has the boundary values of the potential and the
electric field from numerical calculations of the nonlinear PB
equation [16]. These can be used to fit renormalized charge
distributions on the particle surface using the expression in
Eq. (33). Lastly, one can apply the Donnan potential as the
value around which to perform the linearization. This value
requires no other input than the colloid concentration, its
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particle radius, its total surface charge, and the reservoir salt
concentration [14]. In this paper, we leave ®, unspecified.

Inside the colloidal particle @ still satisfies the Laplace
equation. It is natural in this case to expand both the inner
and the outer solutions in spherical harmonics. This leads to
two sets of coefficients, which have to be matched at the
particle surface. Inside the particle

o +{

(D)= 2 X A (&)r'Y,,.(0.4), (30)

€=0 m=—{

whereas in the electrolyte

w  +{
Dy (&:1) = Py — tanh @y + > X [By,(@)ig(ier)
€=0 m=—¢
+ C{f,m(d))k{(’?r)]yf‘,m(e’ ¢)’ (31)
where k’= k> cosh @, and i, and k, are the modified spheri-

cal Bessel functions of order € of the first and second kinds,
respectively. The boundary condition on the particle surface
is given by Egs. (12) and (13), where we decompose the
charge distribution as

L 2041
o(@:h) =2,
=0 477'

Next, we impose the boundary conditions at the cell surface,
which are given in Egs. (14) and (21). Together, this yields
the general solution for the dimensionless electrostatic poten-
tial in the cell interior

D, (@;r) =Dy — tanh D,

S0+ 1
wpietS, 20T i R)
=0 = ¢(€;Ka,KR)

—ig(kr)k¢(kR)|P¢(@ - F)

e i 2¢+ oy,
B & A€ ka, RR)RPR?E (€; ka, RR)
——
€ even

XE((G;Ea,Er)f do'f(&") P, (&' F), (33)

where
= (e:7a, kR) = — {ké(f?a) - f—ekg(:?a)} i (kR)
Kda
+ [ié(l?a) _ f—gigma)}kg(km, (34)
Kda

o J2 (€;ka, kR)
Ay(€;ka,KR) H(RR) ) (35)
The details of the derivation of the expression in Eq. (33) can
be found in the Appendix. Note that the first sum (over all €)
does not depend on the ODF, whereas it does depend on the
particle orientation &. This contribution to the potential is
purely due to the particle at the center of the cell, and it
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vanishes at the cell boundary. Conversely, the second sum
(over even €) does not depend on the particle orientation,
whereas it does depend on the ODF. This means that it de-
scribes the effect of all the surrounding particles. Moreover,
it vanishes in the limit of infinite dilution (R — ).

The thermodynamic potential for the ion distribution in a
single cell is given by [14]

ﬂﬂcell(d)) = psf dr{q)out(&);r)Sinh[q)out((;);r)]

out

-2 cosh[ Dy, (d;r)] + 2}

2
+ “3 f dio(@:0) D, (&:an), (36)

where the label “out” at the integral symbol denotes integra-
tion over the cell interior (i.e., the domain of ®_), and p, is
the reservoir salt concentration (such that k’=8lgp,). We
cannot evaluate this expression analytically. Therefore, we
linearize it around ®,, to find

Bﬂcell(d)) = EQO + ﬁQisu + Bﬂinta (37)

where

4
BQy = ?’n-(R3 - a®)py(®, sinh ® -2 cosh By +2),

(38)

BQii, = p(P, cosh () — sinh CIDO)f dr[ D (B;1) — Dy,
out
(39)

2
B =" J dir( )Py (@30h).  (40)

It turns out that B€);,, depends on the particle orientation and
the ODF, whereas the other two terms depend on neither. The
expression we obtain can be derived through another route,
by expanding the original nonlinear functional of the ion
profiles p-(@;r) up to second order with respect to a density
p=+.o0=ps exp[ +P,]. Minimizing this functional with respect
to the ion profiles yields the LPB equation (29), and the
accompanying expressions for the ion profiles p.(@;r)
=p. ol 1 =Py F Py, (@;r)]. Substitution of this expression
into the functional yields Eq. (37).

VI. ONSAGER-LIKE SECOND-ORDER DENSITY-
FUNCTIONAL THEORY

We now approximate the total free energy (per colloidal
particle) of the system by averaging over all particle orien-
tations. Also, we add an entropic contribution, which is
analogous to mixing entropy

PHYSICAL REVIEW E 80, 041402 (2009)

'BT]:U] ZJd(;)f(,;))ln[4wf(d))]+fd(f)f(d))ﬂﬂceu((f))~

(41)

We neglect the translational entropic contributions of the col-
loidal particles because we are only interested in the effects
of charge anisotropy and orientational distribution. Using the
identity

f dio(@;R)Pe(@" - i) = 0P @), (42)

which can be easily derived from Eq. (32) using the addition
theorem, we derive the following expression for the free en-

ergy:
BFLf]  BFy

=== f ddf(&)In[47f(@)]

+ %f dd)f(d))f do'f(@"K(d,&"), (43)

where
F 2 4
& = EQO + ((bo ol tanh @0)[% - ?ﬂ-(R3
dz(f()
—a®)p, sinh @ | + T((bo — tanh @)
Ak < 20+ 1)02
- = [k(Ra)i\(RR)
2 5 BEele;ka,kR)
—ig(Ka)ky(kR)], (44)
and
k(6.6 = o 20+ 1D)oiPd- 0"

®R* iy Aye;ka,KR)E ((€;ka,kR)
Q(_/
{ even (45)

Note that the second term of B8F,/N vanishes if one chooses
the Donnan potential for the value of ®,. Also, the entire
contribution from SBF,/N vanishes upon taking the func-
tional derivative with respect to f(®).

The structure of the free-energy functional (43) is remark-
ably similar to that of Onsager’s second-virial theory for
hard rods [13]. In the case of spherocylinders, the kernel
K(®,®") stems from hard-core interactions, and it is equal to
the product of the rod density and the orientation-dependent
excluded volume of one rod in the vicinity of another,

K(o,0'") = ]‘—\/’ 4?771)3 +27wL?D +2L*D sin y|, (46)
where L is the rod length, D is the rod diameter. The angle
ve[0,m] between the two rod orientations is defined by
cos y=o-®'. Onsager’s second-virial theory predicts the
existence of an isotropic—nematic transition caused by the
competition between orientational and translational entropy.
In the low-density isotropic phase, the “mixing” term
Jdof(®)In[47f(®)] is minimized by an isotropic orienta-
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FIG. 3. The kernel K(®,®") for different values of the cell
radius R, and two distinct charge distributions. We fixed the values
ka=1, e=1, and klg=0.01. The inset in each graph shows the cor-
responding charge distribution as a function of the angle 6 between
the axis of symmetry and the position vector on the surface. The
charge distribution in the top graph is scaled with oy=103%2,
whereas the scaling in the lower graph is given by o,=103%>.

tional distribution, whereas the contribution due to the aver-
age excluded volume %fdd)f(d))fdd)’f(d)’)K(d),(I)’) is mini-
mized in the high-density nematic phase. This transition only
occurs if the length-to-diameter ratio L/D is large, such that
the kernel K(®,®") is sufficiently anisotropic, with a maxi-
mum at y=m/2. In the limit L> D, the description by On-
sager is quantitative.

In the present case, the kernel stems from anisotropic
electrostatic interactions, and we will investigate if these can
give rise to such a symmetry-breaking transition. In both
cases, the kernel is rotationally invariant, i.e., it only depends
on the mutual relative orientation of the unit vectors @ and
®'—through the dot product @-®'. Figure 3 shows the val-
ues of the kernel K(®,®’) for two distinct surface charge
distributions o(®,n). The angle 6 between the axis of sym-
metry and the position vector on the surface is defined by
cos 0= @-n. The top graph shows a highly peaked distribu-
tion around =0 and #= in the inset. However, the kernel
is much less anisotropic in this case. The lower graph has a
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purely quadrupolar distribution, which reflects in the fact that
the kernel has the same orientational dependence. In both
cases, the kernel has a minimum at y=1/2. Consequently,
we expect no isotropic—nematic transition. In the next sec-
tion, we argue that this conclusion holds for any choice of
parameters.

VII. BIFURCATION THEORY

The ODF that minimizes the free energy (43) obeys the
Euler-Lagrange equation

In[47f(®)] =N - f do'f(&")K(d,o"), (47)

where we introduced the Lagrange multiplier A to ensure the
normalization of f given by Eq. (16). The Euler-Lagrange
equation can be rewritten in a form that always satisfies this
normalization

exp[—fdd)’f(d)’)l((d),d)’)}

f(&) = (48)

f do' exp{— f dd)”f(d)”)K(d)’,d)")J

One easily checks that fi,(®)=1/47 is a solution of Egq.
(48), describing the perfectly isotropic phase. Due to its non-
linear character, one can expect additional (anisotropic) so-
lutions to this equation. Finding explicit expressions for
these solutions, however, is difficult; although good insight
can be obtained from a bifurcation analysis. The goal of this
analysis is to determine if—and for what parameters—an
instability can be found in the reference solution with respect
to a perturbation.

We choose the isotropic ODF (22) as a reference and
expand around this solution by writing f(®)=1/4m+ 5f(®),
with of a small deviation. Following the same scheme as
Kayser and Raveché [17] applied to Onsager’s model of hard
rods, which was extended by Mulder [18], we find the bifur-
cation equation

(&) =- f dd'K(6,6")6f(0') = - K[ofl(@). (49)

This is an eigenvalue equation, for which a nontrivial solu-
tion exists if the integral operator K has eigenvalues —1. The
parameter value for which this occurs is called the bifurca-
tion point, where an anisotropic solution branches off from
the (isotropic) reference solution. The solution to the bifur-
cation equation (49) can be given in terms of eigenfunctions
of K. On the basis of rotational-symmetry arguments, we
find that these eigenfunctions are the Legendre polynomials
of the dot product of the orientation @ with respect to an
arbitrary direction,

f dd'K(8," P& - 3) =\ P& 7), (50)

where the eigenvalues A, follow from Eq. (45),
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Iy 4oy
N =1 ©a’R?> Ay(e;Ka,kKR)E ((€; ka, KR)
0 for € odd.
(51)

for ¢ even

The bifurcation point is determined by A,=—1. However, all
eigenvalues A\, are positive. Therefore, the bifurcation equa-
tion (49) has no solution, and there is no bifurcation point.
The understanding of the origin of this property of the coef-
ficients lies in the fact that both =,(e;ka,kR) and
A(€; ka,kR) approach their minimum in the limit R—a.
Moreover, these limits are non-negative since

1

lim E(e;ka,kR) = =, (52)
R—a K a
4
lim A(e; ka,kR) = _i 3 (53)
K

R—a

The breaking of orientational symmetry—if it exists—cannot
be captured using bifurcation theory in this version of the
Poisson-Boltzmann cell model. It is due to the (local) stabil-
ity of the isotropic solution that holds for all values of the
parameters. However, strictly speaking, this does not exclude
another (globally) stable solution.

In principle, the Euler-Lagrange equation (48) can be
solved numerically—for example, by an iteration
procedure—for any given charge distribution. Alternatively,
it can be rewritten as a (nonlinear) system of equations for
the expansion coefficients f, of the ODF,

2€ + 1
dqr

f@)=2 fePo(6- 7). (54)
14

Using the eigenvalues A\, to rewrite the Euler-Lagrange equa-
tion, we obtain

f dépe(@'i)exp[—Efe'M'Pe'(@"i)]
€/

fo= . (55
J do exp[— > fohePo(@d- i)]

¢!

All solutions satisfy f,=1, and f,=0 for € odd, independent
of the choice of charge distribution. Additionally, if we im-
pose the simple form

K((;),(:)I)z)\()‘l')\zpz((;)' (:),), (56)

then the right-hand side of Eq. (55) can be calculated ana-
lytically for any given value of €. The resulting expression
for £=2 is a function of the product f,\,, which we denote
by g(f>\,). It has the property that g(z) >0 for 1<<0, g(z)
<0 for >0, and g(0)=0. Hence, if N\, >0, the only solution
of the equation f,=g(f>\,) is given by f,=0. Consequently,
the right-hand side of Eq. (55) is identically zero for all €
>0. In other words, for the simple kernel (56), we can rig-
orously show that the isotropic reference solution is the only
possible solution. On the basis of physical arguments, we
expect—but cannot proof rigorously—that anisotropic solu-
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tions do not exist either for kernels with higher-order contri-
butions (with positive amplitudes \).

The results in this section strongly suggest that there must
be positional order before there can be orientational ordering
in suspensions of Janus or other patchy particles. In other
words, we do not expect liquid-crystal phases, and the tran-
sition from an isotropic state to a fully ordered crystal
phase—if it exists—may well be intermitted by a plastic-
crystal phase. Our simple cell model, however, does not take
into account the positional correlations of the plastic-crystal
phase, due to the mean-field nature of the applied boundary
conditions at the cell surface.

VIII. CONCLUSION AND OUTLOOK

We developed a simple cell model in the context of
Poisson-Boltzmann theory for heterogeneously charged col-
loidal spheres. The boundary conditions—on the colloid sur-
face as well as on the Wigner-Seitz cell surface—depend on
the charge heterogeneity and the orientational distribution of
the colloidal particles. Within a linear approximation to
Poisson-Boltzmann theory, these boundary conditions give
rise to a free-energy functional of the orientational distribu-
tion function f(®) that is very similar to the one used in
Onsager’s second-order virial approximation in the descrip-
tion of the isotropic—nematic transition of hard rods [13]. The
present description, however, does not give rise to orienta-
tional ordering. Since our model treats the position of the
colloids in a mean-field description—and since we do expect
some degree of orientational ordering at sufficiently high
particle density—this result suggests that (electrostatics-
induced) orientational ordering requires the existence of po-
sitional ordering. Therefore, we predict no orientational or-
dering in fluids of these particles, i.e., no liquid-crystal
phases. The present theory, however, is based on a number of
assumptions that must be addressed, and some caution is
advised in the interpretation of this result.

First of all, we do not expect that the choice of linearized
Poisson-Boltzmann theory has a significant effect on our
conclusions, although it is known that nonlinear screening
affects the long-range orientation dependence of the electro-
static potential around heterogeneously charged colloidal
particles [16]. The reason for this is that our conclusions
arise from the boundary conditions on the cell surface. In the
case of charge renormalization, this linearization is applied
to fit an effective charge, which describes the asymptotic
behavior correctly. Therefore, all conclusions in this paper
should still hold, when the charge distribution is replaced by
an effective (renormalized) one.

Furthermore, in the case of a high surface charge of dipo-
lar character, the conclusion that there is no orientational
alignment can be rather counterintuitive. Experimental evi-
dence of this alignment always coincides with the formation
of chains [19,20], with a polarity pointing in the direction
along the chain, due to the dipole moment of the constitu-
ents. However, such chainlike structures have a strong
orientation—position correlation that is not captured by the
cell model as formulated here. Our prediction of the absence
of liquid-crystal phases in these systems is consistent with
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the types of phases found in simulations of dipolar particles
such as isotropic-fluid, string-fluid, and gel phases at low
density, and face-centered-cubic, hexagonal-close-packed,
and body-centered-tetragonal solid phases at high density
[21]. Indeed, no liquid-crystal phases were found.

Finally, we showed it to be impossible to find solutions
that branch off from the (isotropic) reference solution, using
bifurcation theory, because this reference solution fails to
become unstable. Hypothetically, stable anisotropic solutions
that do not connect to the (metastable) reference solution
might still exist. However, our model belongs to the class of
models—investigated by Mulder [18]—for which this type
of solution has not been found. Our explicit analysis of the
simple case in Sec. VII—concerning a charge distribution
consisting of a monopole and quadrupole charge only—
supports this conclusion.

A potentially serious shortcoming of our model is the
mean-field treatment of the colloidal particles. The present
model does not include any positional or orientational corre-
lations. The nature of these correlations can be related in a
simple way to systems of oppositely charged colloidal par-
ticles [22,23]. The number of bonds between oppositely
charged particles in these systems depends on the colloid
density. Also, for the dense liquid phase—coexisting with a
dilute vapor phase provided the Debye screening length is
large enough—the pair distribution function shows that a
colloidal particle is surrounded by different layers of colloi-
dal species with alternating signs of charge [22]. The first
surrounding layer has an opposite charge with respect to the
particle in the origin; the next layer is like charged and so on.
These systems also display multiple crystal structures, which
have different coordination number. The same notion can be
applied to particles of different orientations to include orien-
tational pair correlations in the cell model.

One could consider to expand the class of Poisson-
Boltzmann cell models by incorporating a description of
these correlations. More specifically, one can choose a dif-
ferent approach to the way that the surface potential ®y is
determined. In the present models, this potential is indepen-
dent of the colloidal species (or orientation) to which the cell
belongs. Also, each colloidal species (or orientation) has an
equivalent weight—equal to its molar fraction (or value of
the ODF)—in the average of the potential and electric field
flux at the cell boundary. This property is due to the mean-
field description, which is used, through the assumption that
the surrounding of a particle at the cell boundary is indepen-
dent from the species it belongs to, or equivalently, its ori-
entation. However, if this restriction is lifted, one may in-
clude the fact that the surroundings do depend on this
property through the pair distribution function.

Additionally, a jellium approximation can be applied in
the same way it is applied to monodisperse systems of ho-
mogeneously charged colloidal spheres and rods [24,25]. In
this description, there is no need for a certain cell shape and
volume. Moreover, the jellium model has a natural way to
include particle pair correlations [26,27]. Finally, there is an
opportunity to apply the Poisson-Boltzmann cell model to
nonspherical cells [28]. The boundary conditions can be im-
posed in the same way as in this paper. However, this com-
plicates the expression of the appropriate boundary condi-
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tions since a nonspherical shape will couple different
spherical harmonic modes. The shape of these cells must be
controlled by additional constraints such as the minimization
of free energy. Also, the choice of shapes must be motivated
by physical arguments. We leave these options for future
studies.

APPENDIX: DERIVATION OF THE ELECTROSTATIC
POTENTIAL

Inside the colloidal particle ®(@;r) satisfies the Laplace
equation, whereas in the electrolyte it satisfies the LPB equa-
tion. Therefore, we have to match two general solutions, us-
ing the boundary condition on the particle surface. We do
this by expanding both solutions in spherical harmonics.
These expressions are given in Egs. (30) and (31). We apply
the boundary condition on the particle surface given by Eqgs.
(12) and (13). To this end, we expand the surface charge
distribution in spherical harmonics, using Eq. (32) and the
addition theorem,

o +{

o(dih) =X D 0¥, (@)Y, (h).

€=0 m=—¢

(A1)

The arguments fi and & of the spherical harmonic function
should be interpreted as the pair of spherical angles of this
orientation with respect to the reference frame. Conse-
quently, from the boundary conditions (12) and (13), we ob-
tain the following condition on the coefficients of ®:

14 14
Be,mw))[ie(ka) - %u(m)} + ce,mm)[ke(ka) - %wm}

=—dmilgk 'oeYy,,(0). (A2)

Next, we apply the boundary conditions at the cell surface
given in Egs. (14) and (21). This yields a linear system of
equations, which can be solved analytically. However, we
can choose to split the solution into two contributions. The
first contribution then satisfies the boundary conditions on
the particle surface—given by Eq. (A2)—as well as the con-
dition that the potential vanishes at the cell boundary. This is
already the relevant boundary condition for all odd contribu-
tions to ®(d;r), whereas a second contribution must be
added later to the even contributions in order to satisfy the
full set of boundary conditions. The coefficients that belong
to the first contribution will be denoted by By, (&) and
C¢»(®). First, we impose the vanishing potential at the cell
boundary by

B (®)if(kR) + Cq,,(@)k((KR) =0. (A3)
Together with Eq. (A2), this yields
4algic oYy, (@
Bop(@) = T OT O oy
E(e;Kka,kR)
dmlgk oYy, (&
Copti) = TR TlD ey (as)

Z(e;ka, kR)

where E,(€; ka, kR) is defined in Eq. (34). The orientational
dependence of this first contribution is such that it—and
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therefore all odd contributions—only depends on the angle
between @ and F,
D ga( ;1) = g Y, (2€+ DogP(d-F)
=1
€ odd

% k((l?r)le(l?R) - lg(l?l")k{g(l?R) '

E(e;Ka,kR)

(A6)

As previously mentioned, a second contribution must be
added to the coefficients of the even contributions. With this
contribution included, the solution ®(@;r) satisfies the full
set of boundary conditions on the cell surface given in Eqgs.
(14) and (21). We denote the coefficients of this secondary

contribution by E&m and 55,,,,. Also, we show that these do
not depend on the particle orientation because the two dis-
tinct boundary conditions that govern them do not. First, the
boundary condition (A2) is already satisfied by the coeffi-
cients By, (@) and Cy,,(®). Therefore,

- 24 ~ ¢
B(m[lé(ka) - %lf(’?a)] + Cf,m|:ké(’?a) - %k((kﬂ)] =0.
(A7)

Second, the boundary condition (14) imposes a value on the
coefficients that only depends on the value of the potential at
the cell surface, which is necessarily independent of the ori-
entation @. Hence,

Eﬂtni«f(ER) + E&mkf(ER) = ¢€,ms (Ag)
where ¢, is defined by
o +{
D) = Po—tanh Do+ X 2 bV, ().
€=0 m=—€
€ even (A9)
Together, these conditions yield
- el
By, =- {k@(f?a) —kg(Ka)} P (a1
’ Z,(e;Ka,kR)’
~ el "
Com= {ié('?a) - _—ie(f?a)} ~¢+ (A11)
’ Ka E(€;ka,kR)

Finally, the boundary condition (21) imposes a vanishing
value of the weighted average of the even contributions to
the electric field flux at the cell boundary. This condition can
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be expressed in terms of a relation between the coefficients

By s Coms Eg’m, and C ¢.m- By substituting the values given in
Egs. (A4) and (A5), we arrive at

By iy (RR) + Cy k((RR)

4algk o
=— B 5;2 zf dof(®)Y,, (@) for € even,
B (€;ka,KR)k°R ’

(A12)

where we used

kg(ER)ié(ER)—ig(ER)ké(ER)=TRZ Ve, (A13)

which can be derived from standard identities for the modi-
fied spherical Bessel functions. The conditions in Egs. (A7)
and (A12) are sufficient to derive similar expressions for
E&m and 6€’m. However, the construction we use to derive
the solution to the even contributions enables us to show that
the cell surface potential ®x(1i) has the same symmetry prop-
erties as the ODF (in addition to the fact that it is composed
purely of even contributions),

A7lgk o,
A(€; ka, KR) K*R?

bem= fdcﬁf(ﬁ))Y?,m(t?’), (A14)

where A/(€;ka,kR) is defined in Eq. (35). With this, we
readily obtain the even contributions

- ¢
vy, 2+ Do {[m(w)n(m)

D en(@:ir) =g _—
e ? =0, E(€;Ka,KR)

€ even

—ig(kr)k((kR)]P¢(& - ¥)

E(e; ka, ir) J o o

+ d ’ "p 'f ’
A(€; ka,kR)©*R2 o' f(&")P (& )}
(A15)

and we obtain the general solution for the dimensionless
electrostatic potential in the cell interior given in Eq. (33).
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